
Unit 3. Matlab Syntax

3.1 Variables
3.2 Expressions
3.3 Fundamental data types
3.3 Operators
3.4.Screen output, input and comments

Syntax

n The syntax of a language defines how to use
keywords, operators, and variables to build
and evaluate expressions.

n In this first part of the Matlab Language
syntax we specify how to write the following
elements:
q Variables
q Expressions
q Operators
q Data types

n Some possible definitions:
q “A symbol or name that stands for a value”
q “A variable is a container which holds values”
q “A variable is the name for a place in the computer's

memory where you store some data.”

n A variable is a symbolic name given to an
unknown data that permits the name to be used
independently of the information that represents
q Variables are associated with data storage locations
q Values of a variable are normally changed during the

course of program execution

Variables

n In MATLAB variables can be used:
q In the command window
q Within the code of a program
q As parameters of functions

n We can assign a value of a variable, retrieve its
value and operate with its value

n A variable is made of
q Identifier/Name: list of characters used to reference the

variable
q Type: states the kind of values that will be stored in the

variable
q Value: its current data

Variables

Variables: naming a variable
n Naming variables

q The names are case sensitive (myvariable and
myVariable are different variables)

q The names should start by a letter followed by any
combination of letters, digits and underscores

q Avoid using too long variable names

q Never use names of existing functions or MATLAB
keywords (break, case, etc..). You can verify by using
the function ‘isvarname’

Always use meaningful names

Variables: assignment/creation statement

n It is used to set value to a variable.
variable = expression

n Examples:
guests = 20
vocal = ‘a’
amount = 240.78 + 5

You can modify the value of a variable as many
times as you want

Note that this equal sign
represents an assignment
and not an arithmetic
equality

Variables: retrieving its value

n The current value of a variable can be obtained
writing the name of the variable in the command
window. For example:

>> guest
guest = 20

>> vocal
vocal = a

>> amount
amount = 245.78

Variables: retrieving its value

n As part of an expression:
q An expression is a construction composed by variables,

values, operators and function calls

q MATLAB evaluates an expression an returns a value
q Examples:

>> guest * 5
ans = 100

>> (guest - 2) * 20
ans = 360

>> cans = (guest * 3)
cans = 60

MATLAB evaluates the
expressions from left to
right . If the expression has
not been explicitly assigned
to a variable MATLAB
automatically stores the
result in the special
variable ans.

Variables: type of variable

n A type restricts the values that a variable can
include, restricts the operation supported by
these values and determines the meaning of
the operation.

n Matlab includes two categories of data types:
q Fundamental data types: integers, chars, booleans..
q User-defined types (MATLAB interface to java, not

used in this course)

Fundamental data types

n There are 15 fundamental data types in MATLAB (lowercase in the diagram)

R2019b Documentation → MATLAB

http://www.mathworks.com/help/index.html
http://www.mathworks.com/help/techdoc/

Fundamental data types
n Boolean data types:

q logical : Represents a logical TRUE or FALSE state using the
numbers 0 and 1. 0 represents FALSE and 1 represents TRUE

n Integers:
q uint8, uint16, uint32, uint 64: Unsigned integers. Size of 8,16,

32 and 64 bits respectively.
Ej: intmin(’uint8’) intmax(’uint8’)

ans = 0 ans = 255
q int8, int16, int32, int 64: Signed integers. Size of 8,16, 32 and

64 bits respectively.
Ej: intmin(’int8’) intmax(’int8’)

ans = -128 ans = 127

n Floating point numbers
q single: Floating point numbers of 32 bits
q double: Floating point numbers of 64 bits

Fundamental data types

n BY DEFAULT MATLAB STORES NUMERIC DATA AS DOUBLE.
A = 56 - The type of A is double

To store the number as a different type you must specify it

A = int8(56) - The type of A is int8
A = single(3.67) - The type of A is single

Fundamental data types

n Character data types:

q char : Characters. Size16-bits. Unicode.

q TO SPECIFY THAT SOMETHING IS A CHAR YOU SHOULD
PUT THE CHARACTER WITHIN SINGLE QUOTATION MARKS

q Example: var = ‘T’

q Special type of array(vector) is a character string, it is a text
surrounded by single quotes. Example: str = ‘Hello’

Fundamental data types

n Cells: Array of indexed cells, each capable of storing an array of a
different dimension and data type.

A = {‘Hello’, 0.23, [0 1 2 3]}

n Structures: provide the means to store hierarchical data together in
a single entitity by asociating named fields to different information.

s = struct(‘a’, ‘Hello’, ‘b’, ‘0.23’, ‘c’, [0 1 2 3]);

s.a s.b s.c
ans = ‘Hello’ ans = 0.23 ans = 0 1 2 3

Variables: types
n In a strongly-typed programming language the

datatype of the variable is defined as soon as
the variable is declared.

n Matlab is NOT strongly typed. Variables don’t
need to be declared prior to use.
q When MATLAB encounters a new variable name, it

automatically creates the variable and assign a type
based on the type of data is going to store.

q When MATLAB encounters an assignment of an
existing variable, the value and type that the variable
had before the assignment is lost.

Variables: declaration (creation)

n Example:
>> X = 50

>> Y = ‘b’

>> X = -23.4

>> X = ‘c’

Variables: declaration (creation)

n Example:
>> X = 50

>> Y = ‘b’

>> X = -23.4

>> X = ‘c’

MATLAB creates a variable X of type Double and
stores the value 50

MATLAB creates a variable Y of type Char and
stores the character b

MATLAB stores the value -23.4 in the variable X

MATLAB modifies the type of the variable X.
Now the variable has the type Char and stores
the character ‘c’

Variables: declaration (creation)

n Be careful. You cannot operate with variables for which
you haven’t specify a value yet.

nExample:
>> A = 50

>> B = A * 2

>> C = A + D

What would be the answer
from MATLAB to these
commands?

Variables: declaration (creation)

n Be careful. You cannot operate with variables for which
you haven’t specify a value yet.
nExample:

>> A = 50
A = 50
>> B = A * 2
B = 100
>> C = A + D
Error. Undefined function
or variable ’D'.

MATLAB computes the value
of B by replacing A in the
expression for its current value
(50)

The variable D has not been
created previously. MATLAB
cannot replace it by any
value.. therefore you get an
error!

Operators

n They are characterized by:
q Numbers of operands (unary, binary, or

ternary)
q The type of operands (i.e. numeric or boolean)
q The type of generated result

Aritmetic Operators

n Aritmetic operators when working with variables with one single value
(no matrices)

q + Addition
q - Subtraction
q * Multiplication
q / Division
q ^ Power

Relational Operators

n Relational Operators
q < Less than
q <= Less than or equal to
q > Greater than
q >= Greater than or equal to
q == Equal to
q ~= Not equal to

n Example:
A = 7
B = 10

A > B A < B A == B
0 1 0

n Relational operators
compare values

n The result is a boolean
value:
n 0 when false
n 1 when true

Logical Operators

n Logical operators:
q & and
q | or
q ~ not
q xor exclusive or

n For Matlab the 0 value
corresponds to the logical
value False, and any value
different from 0 corresponds
to True

A B A&B A|B xor(A,B) ~A

0 0

0 1

1 0

1 1

Logical Operators

n Logical operators:
q & and
q | or
q ~ not
q xor exclusive or

n For Matlab the 0 value
corresponds to the logical
value False, and any value
different from 0 corresponds
to True

A B A&B A|B xor(A,B) ~A

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

Logical Operators

n Short-circuit operators
q && and
q || or

n Example:
A && B

if A equals zero returns zero
if A is not equals zero it evaluates B
and returns the correspondent value

n They work exactly in
the same way as &
and | , but they
evaluate their second
operand only when
the result is not fully
determined by the
first operand

In summary: they are equivalent to the operators & and |

Order of Operations
n Associativity ()
n Transpose, Power: .‘,.^, ‘,^
n Logical negation: ~
n Multiplication, division: *, /, \, .*, ./, .\
n Addition, subtraction: +, -
n Colon: :
n Less, greater, equal: < > <= >= == ~=
n Element wise And: &
n Element wise Or: |
n Short circuit And: &&
n Short circuit Or: ||

It is a good idea to use parentheses to explicitly specify the intended
precedence

Computer Programming – Bachelor in Biomedical Engineering.

Example:
2+3*5 == 17
(2+3)*5 == 25

My first Matlab program

n Exercise: We want to create a program to
automatically obtain the shopping list for our
party

q Number of bags of ice cubes will be obtained by
dividing the number of guests by 4

q Number of pizzas will be obtained by dividing the
number of guests by 3

q Number of cans of coke will be obtained by multiplying
the number of guests by 4

My first Matlab program

n Exercise: We want to create a program to
automatically obtain the shopping list for our
party
q Solution (using what we know so far…)

n We are going to store the number of guest in a variable
n Then we are going to perform operations with the

variable to obtain the number of ice bags, cans of coke
and pizzas

My first MATLAB program

n Creating the source file:
q The source should include the MATLAB language code.
q A text editor can be used to create and edit the source files.
q The extension of the file should be .m

n Running the program:
q Type the name of the file in the command window.
q The program should be placed in the current directory or in any

directory of the variable path

Remember: You do not need to explicitely compile the program.
Since MATLAB is an interpreted language the compilation is carried
out automatically everytime you execute the program.

My first Matlab program

n Solution:

guests = 20
guests / 4
guests / 3
guests * 4

File name: shoppingList.m Execution of the program
Command line:
>> run shoppingList
guest = 20
ans = 5
ans = 6.6667
ans = 80

My first Matlab program

n Solution:

guests = 20
guests / 4
guests / 3
guests * 4

File name: shoppingList.m
Execution of the program
Command line:
>> run shoppingList
guest = 20
ans = 5
ans = 6.6667
ans = 80

It’s ok …. but we have to modify the program each time
we want to modify the number of guests

User keyboard input

n The command for asking the user to
introduce some data via the keyboard during
the execution is input.
q For numerical inputs (you want the user to introduce a number)

variableName = input(‘any sentence’)

q For character inputs (you want the user to introduce a character)

variableName = input(‘any sentence‘, ‘s’)
Remember this. It is a very common mistake

for begginners not to put the , ‘s’ when
working with text entries. If you don’t include

it your program will not work!

http://www.mathworks.com/help/techdoc/ref/input.html

My first Matlab program

n Solution:

guests = input(‘Introduce the number of guests: ’)
guests / 4
guests / 3
guests * 4

File name: shoppingList.m

EXECUTION
Command line:

>> run shoppingList
Introduce the number of guests: 20
ans = 5
ans = 6.6667
ans = 80

Exercise

n Exercise: Write a program named converter
for changing euros to pounds. The exchange
rate is: 1Є = 0.799£

q Example of execution:
Introduce a quantity: 5
ans = 3.9950

Exercise

n Solution:

FILE: converter.m

euros = input('Introduce a quantity: ’)
euros * 0.799

Exercise

n Exercise: Modify the converter program so it
also asks the user to introduce the exchange
rate
q Example of execution:

Introduce a quantity: 5
Introduce the change rate: 0.799
ans = 3.9950

Exercise

n Solution:

FILE: converter.m

euros = input('Introduce a quantity: ’)
change = input('Introduce the euros: ’)
euros * change

Exercise

q Example of execution:

Introduce a quantity: 5
Introduce the change rate: 0.799
ans = 3.9950

Not an elegant way of displaying the result….
… the next week we will learn how to do it better

Exercise

n Exercise: Write a program which asks the
user to introduce two numbers and returns
the sum of the two values
q Example of execution:

Introduce a number: 8
Introduce another number: 2
ans = 10

Exercise

n Solution:

number1 = input('Introduce a number: ’)
number2 = input('Introduce another number: ’)
number1 + number2

Exercise

n Exercise: Modify the previous program so it asks two
numbers and prints their sum. Next asks the user to
introduce another number and divides the previous sum
by it
q Example of execution:

Introduce a number: 8
Introduce another number: 2
ans =10
Introduce another number: 2
ans = 5

Exercise

n Solution:

FILE: division.m

number1 = input('Introduce a number: ’)
number2 = input('Introduce another number: ’)
mySum = (number1 + number2)
number3 = input('Introduce another number: ’)
mySum / number3

Exercises

1. Write a program that asks the user to introduce
the coordinates x, y of two points and computes
their distance

q Remember the operator for power is ^
q To compute the square root use the MATLAB funcion

sqrt(X)
2. Write a program that asks the user to introduce

an student’s marks in five exams. The program
should:

q Compute the average mark

Solutions

n 1.- Solution

x1 = input('Introduce the x coordinate of the first point: ');
y1 = input('Introduce the y coordinate of the first point: ');
x2 = input('Introduce the x coordinate of the second point: ');
y2 = input('Introduce the y coordinate of the second point: ');
distance = sqrt((x1 - x2)^2 +(y1 - y2)^2)

Solutions

n 2.- Solution

m1 = input('Introduce the first mark: ');
m2 = input('Introduce the second mark: ');
m3 = input('Introduce the third mark: ');
m4 = input('Introduce the fourth mark: ');
m5 = input('Introduce the fifth mark: ');
average = (m1+m2+m3+m4+m5) / 5

